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Agent based modeling

Bottom → up

An agent-based model consists consists of a systems of agents with specified
relations between them [1, 2, 3, 4, 5, 6]. Agent-based models are interesting be-
cause of their focuss on emergent phenomena: How does big systems behave as
function of repeated simple interactions among relatively simple agents. Agent
based models have been used to study a range of living systems, including seg-
gregation [2], traffic jams, evacuation behaviour [4] social insect organization
[8], stock market behaviour, as well as pattern formation and cellular automa-
tons [1, 3]. Thinking of emergence in terms of actions of individuals is also
behind important papers on information assymetry in markets [7] as well on
possible explanations of scale free distributions of wealth as well as usage of
words [9].
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Schelling model: Schelling model with noise:

Figure 1: Simulation of schelling model, demonstrating seggregation of agnets with
two colors ”red” or ”yellow”. At each step one agent is selcted and attempt to replace
position with another randomly selected agent in the system. The attempted move
is accepted if the number of opposite color agents within the nearest 4 neighbors
of the selected agent is reduced. Left panel show how the agent seggregate within
a few updates per aget in the system but then freezes as no further movements
are possible. Right panel show that accepting suboptimal moves with some small
proability β = 0.01 opens for segregation into larger homogeneous regions.

Sometimes agent based thinking can inspire analytical understanding of a
particular phenomenon, but this is not a requirement for being usefull. Rather,
focussing on the basic units and their interactions, one may obtain a valid
description of a system where a analytically solvable model would fail. Defining
relevant space of interactions between the agents is the key and the art of any
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succesfull model.
Perhaps the earliest simple agent based model was the one proposed by

T.C. Schelling [2] in 1969 to describe the apparent seggregation in white and
black neighborhood, see Fig. 1. A seggregation model which can possible
also be of relevance in seggregation of various cells types into tissues using the
Differential adhesion hypothesis [11, 12].
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Figure 2: Steady state distribution of “strength” distribution from a long simulation
of a social hierarchy model. In the model there is N=100 agents that each is have
strengths s ≥ 1. At time zero si = 1 for all agents i. At each timestep two agents i
and j are selected, and i is assigned to be winner with probability si/(si + sj), and
otherwize j is the winner. The winner increase its strength s → s+ 1, whereas the
loser decrease its s 1 unit provided that it remain ≥ 1. After N such updates, one
agent is reset to strength s = 1. Red dots represent one early distruibution, whreas
blue dot represent one late distribution of strengths.

Another example is a minimal version of a hierarchy model, simulating a
positive feedback between winning and future chance of winning [14, 15]. As
in the above cited references, we here let agents fight for status, and increases
in this status provided that they win encounters over competitors. Even with
simple rules, the system develop towards a steady state characterized by a
hierarchy with few in the top and exponentially many more agents in the
bottom of the hierarchy, see in Fig. 2. Notably, as there is a net increase in
fighting strength with the simple fighting rule of Fig. 2, random agents are
also assumed to die and be replaced by new agents at some slow rate. It is
this random ‘killing” that secure a steady state distribution of the strength
distribution. A steady state distribution where these is few in the top and
many more at each lower level.

• Lesson 1: Social structure can emerge as consequence of many ittera-
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tions of simple update rules between pairs of agents.

Questions:
1) Simulate the Schelling model in 2-dimension, taking only into account nearest

neighbors (left-right and up and down). Allow moves where the agen keeps exactly

the same number of opposing type neighbors.

2) Simulate a Schelling like model with 3 colors, all of which want to minimize

exposure to each other. Also simulate a variant where only 2 colors mutually want to

minimize number of neighbors of opposing color, whereas one color moves randomly.

2) Simulate the hierarchy model in the text, wit the constraint that agents walks

randomly on a 1-d line (let agents at neighbor position switch positions each time

they have a hierarchy battle).

Figure 3: Company size distribution in USA, exhibiting a scale free behaviour with
exponent -2 (data from R.L. Axtel, 2001).

Emergence of an unfair society from a fair game

Value and wealth are exposed to multiple random factors, that vary hugely
across society [18] and unpredictably in time [17]. In principle, wealth opens
up for investment, and thus for generating more wealth, in a self-amplifying
process. However, investments are rarely profitable immediately, and potential
gain is potentially deteriorated by random events until the investment has
matured and its eventual profit can be realized.
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The skewness of wealth distributions [18, 19] have inspired a number of
ad-hoc modeling approaches, emphasizing explicitly the advantage of the rich
in dealing with the poor while redistributing wealth [20, 9]. Most notably, the
preferential accumulation [9] of wealth naturally generates scale-free wealth
distributions with fortune f occurring with probability ∝ 1/f γ with γ > 2.

An alternative approach to obtain skewed wealth distributions has its roots
in multiplicative random processes [37, 22], where in particular [23, 24] sug-
gested that skewed wealth distributions may reflect a stochastic multiplicative
process with a drift.

Following Bornholdt & Sneppen (preprint, 2012) we here introduces a sim-
ple model of wealth accumulation, with similarities to a multiplicative random
process. It is a non-interactive agnet model where wealth is not generated
by competition, but by simple gambling assuming that any investment is a
fair gamble. That is, any investment is defined to have a 50/50% chance to
succeed, and if it succeeds the gain exactly equals to the loss associated to its
potential failure.

The model aims at drawing an anecdotal sketch of the speculation mode, or
casino mode, of real markets. Investments are possible but their return is, on
average, exactly zero. The quit-or-double game inevitably leads to bankruptcy.
We call an agent “bankrupt” once he reaches zero wealth and thus is not
able to continue the game. However, new agents may constantly enter the
system with some small fortune, a minimal unit we here set to f = 1. The
wealth distribution of the quit-or-double game is obtained by iterating fortunes
f → 2× f , respectively f → 1 with equal probability. The f → 1 correspond
to one agent losing everything, being replaced by a new agent that enters
the game with f = 1. The probability to reach fortune f = 2j or more
is the probability to with at least j consequetive games, i.e. (1/2)j. Thus
P (> f) = 1/f , equivalent to the famous Zipf distribution for distribution of
word frequencies [25]. The corresponding probability to have a fortune between
f and f + df is p(f) = −dP/df = 1/f 2. This distribution, fits perfectly the
real distribution of company sizes in USA, see Fig. 3.

Remarkably, the scaling of the resulting wealth distribution p(f) = 1/f 2 is
marginally fair, in the sense that the fraction of wealth accumulated at “the
rich” is sizable but not dominating. To understand this, consider a wealth
distribution with a scaling of the form p(f) ∝ 1/f γ with some γ > 1. For this
distribution the amount of money above a threshold T is

F (> W ) =

∫Max
T fdf/f γ

∫Max
1 fdf/f γ

(1)

= 1− Log(T )/log(Max) for γ = 2 (2)

≈ 1− (T/Max)2−γ for γ < 2 (3)

where Max represents an upper maximum that is set by system constraints.
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Figure 4: Dow Jones, an index following the average of the major shares in USA.
The index increase with about a factor 4000. For comparison, the US public depth
changed from ∼ 108$ in the period 1800-1850 to ∼ 5× 1012$ in year 2000.

Therefore, for γ < 2 a major part of the total wealth will be accumulated
at large f , say f > T = Max/2, whereas only a smaller fraction will be
accumulated at f > Max/2 when γ = 2. For γ > 2 the fraction of wealth
accumulated among the wealthiest (large f) is very small.

• Lesson 2: Scale invariant distributions of fortunes may emerge from
rules that do not favour the richest.

Questions:
1) Simulate the quit-and-double game from the text. Plot the resulting wealth

distribution in a society with 1000 agents. What is survival time distribution of

companies?

2) Simulate a quit-and-double game where each agent is only allowed to play with

one unit at a time. Plot the resulting wealth distribution in a society with 1000

agents. What is survival time of companies in this game?

Time series of stocks

Fig. 4 show a stock market index during 200 year period. The index
is calculated as the average of many shares, and should thus in principle be
much less variable than individual shares. In spite of this, there is indeed wild
fluctuations, with occational collapses where the overall walue of all stocks
drops by a factor 10 over a relatively short period. In fact, when one inspect
stock markets across the world, then nearly all stock markets have had about
1 factor 10 reduction one time during the last century. Value is dynamic.
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Figure 5: Daily returns, (S(t) − S(t − 1))/S(t − 1), for Dow Jones stock market
index. Fluctuations are correlated: When variations on one day is large, then it most
likely is large again next day. The direction of these fluctuations are uncorrelated!
The size distribution of short time returns is further analyzed in subsequent figure.

To first approximation the market exhibit a biased random walk. Or more
precisely, detrending for the overall increase due to general growth of the
economy/inflation, the log(price) follow a random walk. The random walk
hypothesis was firts put forward more than a century ago by Bachelier [17], and
has been recently supported by analyzing price fluctuations W (t) as funnction
of time:

W 2(t) = 〈(log(S)− 〈log(S)〉t)
2〉t (4)

where the average is done over all time intervals of length t in the available
timeseries. For a random walk W (t) ∝ t0.5, whereas most stock markets show
W (t) ∝ t0.55→0.65 with the lowest values of the Hurst exponent for the oldest
markets. Notice that one can define the Hurst exponent in terms of both the
variance of prices over a time interval with length t, or instead just define it in
terms of the variation after a time interval t. In both cases it involves sampling
a lot of different starting points!

Remarkably, the correlation between past and future may be related to the
Hurst exponent H , defined by

〈(s(t+ x)− s(x))2〉x ∝ t2H (5)

where the squared price variation is averaged over all starting points x on the
time-series. After some manipulation this gives [43, 44]

〈−∆s(−t) ·∆s(t)〉

〈(∆s(t))2〉
= 22H−1 − 1 (6)
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Figure 6: Distribution of short timescale fluctuations exhibit fat tails. The red and
blue curve have same variance, but very different Kurtosis. Kurtosis quantify the
4’th moment, normalized by second moment squared. It is more sensitive to tails
in distribution that second moment, and would thus be divergent when p(tail) ∝
1/∆sγ , with γ ≤ 5 (prove that). Kurtosis vary substantially between markets,
reflecting a near divergent distribution of the fouth moment of the volatility.

Thus a ordinary random walk with H = 1/2 have C = 0, whereas a H > 1/2
walk imply that the past price difference ∆s(−t) = s(0)− s(−t) is most likely
maintained for ∆s(t) = s(t) − s(0). Thus in the H > 1/2 case, a winning
strategy is to “bet” on the trend: Buy when it is bull market, and sell when
it becomes bear market [44]. Thus for H > 1/2 one should:

Buy at x if s(x− t) < s(x) (7)

Sell at x if s(x+ t) > s(x) (8)

whereas this strategy should be reversed in a H < 0.5 market, see Fig. 7.
Noticably, electricity markets have H = 0.40 [45, 46].

• Lesson 3: Markets are nearly random walks, but also exhibit correla-
tions that may well reflect crowd behaviour.
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Figure 7: Left: Example of a timeseries with Hurst exponent H = 0.40, generated
by wavelet method (not pensum). Right panel examine average return of investment
as function of H where one buy according to trend [44]. The red curves show profit
when one buy on way up, and sell on way down in H > 0.5 markets, and oppositely
in H < 0.5 markets. The two other curves invest proportional to size of past price
change ν = 1, respectively to this channge squared ν = 2. Thus weighting the trend
pays even more off. All returns are measured in units of spread of volatility on
the considered time interval, and the curves in fact scale proportionally to this as
horizon T for investment inncreases.

Questions:
1) Simulate a walk where a price moves one step up or one step down at each

timestep. Let the propability to continue in same direction as previous step be

p = 0.75. Investigate Hurst exponent for this walk numerically.

2) Formal prof of eq. 6. Consider variation around some time point x: ∆xs(t) =

s(t+ x)− s(x) and ∆xs(−t) = s(x− t)− s(x).

Denominator 〈∆2s(t)〉x = 〈s2(x+t)+s2(x)−2s(x)s(x+t)〉x = 2(〈s2(x)〉−〈s(x)s(x+

t)〉x) = f(t) where we use that averaging over all starting time points x makes

〈s(x + t)2〉x and 〈s2(x)〉x equal. In the end remember that the denominator is a

varaince, and thus have to to scale as f(t) ∝ t2H .

Similarly the nominator 〈−∆s(−t)∆s(t)〉x = 〈−(s(x− t)−s(x))(s(x+ t)−s(x))〉x =

−〈s(x− t) · s(x+ t)〉x +〈s(x− t) · s(x)〉x +〈s(x) · s(x+ t)〉x −〈s2(x)〉x=

−〈s(x) · s(x+ 2t)〉x − 〈s2(x)〉x +2〈s(x) · s(x+ t)〉x −2〈s2(x)〉x = 1
2f(2t)− f(t).

Insert f(t) = const× t2H to prove eq. 6.

3) Plot eq. 3 as function of H, as well as profit of a standard strategy in terms of

standard variation as function of H.

4) Interprete the correlation function eq. 6 in terms of probabilties in the case where

deviations from time −t to 0 is +1, whereas deviation from time 0 to t is either +1

or -1.
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Fear-Factor model

To explore economic time series we here focuss on one measure, called
inverse statistics [38, 39]. In turbulence where one measure velocity differences,
the inverse statistics measure distribution of times/lengths until next large
evlocity fluctation. Thus the inverse statistics focuss attention on the laminar
regions of the fluid [38]. In economics this measure is associated to the time
it takes before one obtain a given return on an investment. This will take a
long time when stocks are calm, or when fluctuation is the opposing direction
of what one wait for.

Let S(t) denote the asset price at time t. The logarithmic return at time t,
calculated over a time interval ∆t, is defined as r∆t(t) = s(t+∆t)s(t), where
s(t) = lnS(t). We consider a situation in which an investor aims at a given
return level, ρ, that may be positive (being long on the market) or negative
(being short on the market). If the investment is made at time t the inverse
statistics, also known as the investment horizon, is defined as the shortest time
interval τ(t) = ∆t fulfilling the inequality rDeltat(t)ρ when ρ ≥ 0. For losses
ρ < 0 one similarly define first time where r∆t(t) ≤ ρ. The inverse statistics
histogram, or in economics, the investment horizon distribution, p(τp), is the
distribution of all available waiting times ∆(t) obtained by moving through
time t of the available time series.

The data set used is the daily close of the DJIA covering its entire history
from 1896 till today. Fig. 8 depicts the empirical inverse statistics histograms
the investment horizon distribution for (logarithmic) return levels of ρ =
0.05 (open blue circles) and ρ = 0.05 (open red squares). The histograms
possess well defined and pronounced maxima, the optimal investment horizons,
followed by long 1/t3/2 power-law tails.

Remarkably, the optimal investment horizons with equivalent magnitude
of return level, but opposite signs, are different. Thus the market as a whole,
monitored by the DJIA, exhibits a fundamental gain-loss asymmetry. As men-
tioned above other indices, such as SP500 and NASDAQ, also show this asym-
metry, while, for instance, foreign exchange data do not.

It is even more surprising that a similar well-pronounced asymmetry is
not found for any of the individual stocks constituting the DJIA. This can be
observed from the insert of Figure, which shows the results of applying the
same procedure, individually, to these stocks, and subsequently averaging to
improve statistics. So the question is, why does the index exhibit a pronounced
asymmetry, while the individual stocks do not? This question is addressed by
the fear-factor model introduced below [42].

The main idea is the presence of occasional, short periods of dropping
stock prices synchronized between all N stocks contained in the stock index.
In essence these collective drops are the cause (in the model) of the asymmetry
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Figure 8: Upper two panels show definition of strike price, and the distribution as
measured from detrended Dow-Jones index The blue curves show number of days
when price first exceed current price with 5%, the red when it first is 5%below
current price (notice that insert showing corresponding strike price distributions for
individual companies). Lower panels define model and show predicted strike-price
distributions.

in the index.
Is is assumed that the stochastic processes of the stocks are all equivalent

and consistent with a geometrical Brownian motion This implies that the log-
arithm of the stock prices, si(t) = lnSi(t), follow standard, unbiased, random
walks

si(t+ 1) = si(t) + ǫi(t), i = 1, ..., N (9)

where δ > 0 denotes the common fixed log-price increment (by assumption),
and ǫi(t) = ±1 is a random time-dependent direction variable. At certain time
steps, chosen randomly with fear factor probability p, all stocks synchronize
a collective draw down (ǫi = 1). For the remaining time steps, the different
stocks move independently of one another. To assure that the overall dynamics
of every stock is behaving equivalent to a geometric Brownian motion the
typical movement need a slight bias. Lets q be chance to move up (ǫ = +1) is
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calm periods, and 1− q the probability to move down (ǫ = −1). If probabilit
to have collective fear and syncroneous downward move is p the probability to
move up for one company is (1− p) · q whereas the probability to move down
is p + (1 − p) · (1 − q). Neutral walk demand that these probabilities have to
be equal:

(1− p) · q = p+ (1− p) · (1− q) (10)

fixing q in terms of the probability for overall fear:

q =
1

2 · (1− p)
(11)

q > 1/2 is a compensating drift that governs the non-synchronized periods.
From the price realizations of the N single stocks, one may construct the
corresponding price-weighted index, like in the DJIA, according to

I(t) =
1

N

N
∑

i=1

Si(t) (12)

and investigate inverse statistics for this. This is done in Fig. 8. Overall
result: DJIA is reproduced with one collective fear occuring with probability
p = 0.05 per day, corresponding to one panick event per month or so. The
other parameter is ρ = 5 · σ, where σ is standard deviation of of volatility of
index and we use an index of N = 30 shares. For DJIA σ = 1%.

We conclude that the asymmetric synchronous market model captures basic
characteristic properties of the day-to-day variations in stock markets. The
agreement between the empirically observed data here exemplified by the DJIA
index and the parallel results obtained for the model gives credibility to the
point that the presence of a fear-factor is a fundamental social ingredient in
the dynamics of the overall market.

• Lesson 4: Crowd bahavior and panick on even the relative small scale
of a once in a month event can be seen through use of inverse statistics.

Questions:
1) Consider the fear factor model with 10 stocks that moves one step up or down, all

starting at 1000. With probability p = 0.05 all stocks moves down simultaneously.

What should probability for other up and down movements be to mak individual

stocks a random walk? Simulate the system and plot the time series for the average

stock price.

Modeling a market of Products and Attention
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To emphasize the “‘psychogical” aspects of markets we here consider a
stylized market where the cooperative emergence of “value” is associated to a
positive feedback between perception of needs and demand. [40, 41, 42]

Figure 9: Long time attention-variations in the fashion-model. The power law fit
to W ∝ tH is scaling with Hurst exponent H = 0.65. The parameters for this
simulation was Nag = 500 agents trading Npr = 500 different products, which each
comes in 1000 copies. The meory for agents was put to Tmem = 1000 updates.
The insert refer to a 10-times smaller system emphasizing the interllay between the
total demand of a particular product, and the number of agents that demand the
product as per their greed (memory). The lower curves show how much the agents
that actually need the product.

The market we consider consists of Nag agents and Npr different products.
Initially we give Nunit units of the products to each agent. The number Nunit

is fixed, but the products are chosen at random, so the individuals are not in
exactly the same situation. At each time-step we select two agents at random
and let them attempt to perform a trade between each other. In order to
perform a trade, each agent presents the other a list with the goods he is
interested to obtain.

The trade start by comparing the list of goods that each agent lacks and
therefore would like to get from the other agent in exchange for goods it has in
stock. Therefore, the model first considered the simple need based exchange
procedure: when each of the agents had products that the other needed, then
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one of these products, chosen at random, was exchanged. In case such a
need based exchange were not possible they considered the greed exchange
procedure: one or both of the agents would accept goods which they do not
lacked, but considered useful for future exchanges. The chance for an agent
i to accept a product j is pij = Tij/Nmem where Tij is the amount of times
product j appears in agent i’s memory, a memory that have total size Nmem.

After trading, each agent update his memory list by replacing one random
of hist memory slots with the memory of one of the products that his opponents
showed interested in. This last step makes products that are needed, more
wanted, and further spread the desire for products that some agents wants.

Fig. 9 examine statistics of the demand for one product j, Dij =
∑

i Tij ,
examining how much a given product fills in all agents i = 1, 2, ...Nag memory.
This attention represent the value of a product. The fluctuations in demand
is persistent, quantified by Hurst exponent H > 0.5. If many people think
its valuable, then it is valuable, giving a positive feedback. A feedback that
makes value of value, proved some seed from need. 1).

• Lesson 5: Attention opens for positive feedback, which with some noise
can cause large persistant fluctuations.

Language spreading & Information sorting

It is generally understood in historical linguistics that geolinguistic dif-
fusion, the process by which linguistic features spread geographically from
one dialect or language to another, plays a central role in the evolution of
languages[47]. Origins of linguistic changes are plentiful where societal changes
and movements are of pivotal importance. The dynamics and causes of lin-
guistic change provide therefore important clues to the historical developments
and interplay between societies [?].

It has long been observed that linguistic features, just like innovations,
spread outward from an originating centre. Spatial patterns are, however,
rather ambiguous. A beautiful example is the geographical distribution of the
word ’snail’ in Japan. In a celebrated work in 1927 K. Yanagita [49] found
that ancient forms of the word still existed on the southern and northern parts

1Notice that we in principle have not described the model fully, as it as defined above
will not give a steady state. That is, as time goes, products will occationally be distributed
soall agents have at least one, and simultaneously such that no agents have the product
in its memory. When this happens the product is forgotten, and effectively dissapear from
the market. To prevent this from happening, one can put in a small probability p that
individual products dissapear, and at the same time let agents produce random products to
sustain the overall number of goods in the population. The result shown in Fig. 9 in fact
refer to such a simulation.



Kim Sneppen: Agents in Econo- & Social systems 14

of the country but not in the middle. He concluded, using his wave theory,
that this reflected the strong influence that Kyoto, Japan’s old capital.

Following Lizana et al. [50] we now consider the dynamics of culture spread-
ing around strong pulsating culture centres. As a proxy for the spreading of
cultural traits we use the spreading of words where the key feature of our
model is that new words are more prone to adopted than old. As a special
case we study word spreading in Japan which serve as a good base case of a
single strong centre thriving of ideas which spread over the country.

Figure (a) shows the geographical distribution of swear words over Japan
which clearly bears features of the wave theory. There are about 20 words
present in the map where the overall trend is that old words are found far
away from Kyoto and new words close by. The drawn circles show their centre
of mass distribution with respect to the absolute distance from Kyoto. The
data shows the gap between to adjacent circles are not uniform but grow
with increasing distance away from Kyoto. Also, the speed of swearword
propagation has been estimated to be vword = 1 km/year (0.5-2 km/year)
meaning that words in the northern and southern parts of Japan are about
500 years old.

Our model is defined on a two dimensional lattice on which words, after
being coined in the culture centre, spread. In order to capture the ongoing
adoption and subsequent communication of new words originating with a given
frequency fword from the centre, at each time step a word is replicated and
passed on to a neighbouring randomly chosen lattice site. If it is sent to a
location inhabited by an older version, the new one is adopted. But, if it
is transmitted to a place where an even newer version exists, the older word
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Figure 10: Snapshots of a simulation showing the spatial dynamics of word spread-
ing over the Japanese mainland. (left panel) Ongoing spreading where each colour
represent a different word. Blue and red circles show two examples where the same
word forms is found symmetrically on either side of kyoto. The graph in the up-
per left corner shows the mean distance between two adjacent fronts (averaged over
many runs) as a function of distance from Kyoto. The orange broken circle belongs
to a word which only is present at Kyoto’s east side. The probability that a word
coexists on both sides decay with distance away from Kyoto in a way shown in the
inset. We investigated the behaviour when the spatial resolution (width of lattice
site) was set to 15 and 30 km, respectively. (middle panel) Age landscape illustrat-
ing how older and older words (yellow to dark red colouring) are encountered as one
moves further away from Kyoto. (right panel) River landscape showing the path the
new words took as they moved away from Kyoto. In order to improve the quality
of the figures, a lattice spacing of ∆ = 5 km was used.

is ignored; new concepts always overrules old. We point out that our model
captures the way in which new cultural traits invade new territories and not
their coexistence. This means that new and old concepts in principle can live
in parallel in the same region of space (it is, however, only the most recent
that is transmitted) but we are interested in the most recent one. We have
implemented our model in an interactive java applet, see cmol.nbi.dk

A snapshot of a simulation from our java applet is shown in Fig. 10. In
the left panel each new word is given its own random colour and the source
(Kyoto) is marked in black. The model gives rise to patterns of concentric rings
penetrating the landscape moving outward from source. Also, the same colour
can be found an either side of Kyoto without being present in the middle, a key
feature of the real data (Fig. ). If we calculate the corresponding radii for all
colours in the landscape and average over many landscapes, the mean distance
between two consecutive words increase when moving away from Kyoto as is
shown in the graph in the left panel. This result obviously hangs on the
frequency of new words fword from Kyoto as well as the coarse graining of
space. The graph therefore depicts two cases where we used lattice spacings
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of ∆ = 15 km and ∆ = 30 km where the word frequency was adjusted in
each case such that about 20 words could be distinguished simultaneously on
Hunshu island, as required by the data. Based on the fact that vword = 1
km/year we find from our model that new words are being coined in Kyoto on
average every 30th year for ∆ = 15 km and every 60th year for ∆ = 30 km.

In addition to the geographical distribution of words, it is also interesting
to see along which routes the words traveled. This can be quantified within
our model if we at each lattice point store from which neighboring site the
latest word came in addition to its age, similar to the river networks of the
time walkers. By this we again follow information pointers downstream and
eventually reach all the way back to the source, see Fig. 10. The river network
is self-similar and obeys similar scaling relations as river networks of flowing
water (but with different exponents).

• Lesson 6: Information spread while being sorted according to age: New
is better than Old!

• Lesson 7: Building roads, or making “information highways”, will ho-
mogenize the system. The roman empire got that right.

Questions:
1) Consider spreding of signals along a 1-d line, with new words appearing at po-

sition x = 1 with a high frequency (for example each time teach agent have been

involved in one word exchange). At each step, select two neighbors, and let the

youngest word spread to replace the oldest word. Plot number of words from posi-

tion 1 to any position x < N = 1000 in a steady state situation.

Self-assembly of information in networks

To put our information spreading in a network perspective see Fig. 11, a
network composed of individual agents, each of them connected to a num-
ber of acquaintances [52]. Each individual communicates with its immediate
neighbors in order to exchange information about agents in other parts of the
system.

When an acquaintance of agent number 5 in Fig. 11 obtains information
about 5, it sets its pointer to 5, and the information starts aging. With
successive communication events, the information spreads from agent to agent
and gets older and older (we increase the age of all information (clocks in
Fig. 11) when all links on average have participated in one communication
event). When two agents compare the validity of their pointers to a target
agent, like 1 and 6 to 5 in Fig. 11, they validate the newest information as



Kim Sneppen: Agents in Econo- & Social systems 17

4

7

6

1

2

3

5

Figure 11: Self-assembly of information as modeled in this paper. Agents at nodes
communicate with their acquaintances about any third target agent in the network,
and estimate the quality of the information by its age (clocks over the heads from
left to right corresponds to age of information about agent 1, 2,. . . 7). The pointers
are, for every agent, the acquaintance that connects most efficiently to each of the
other agents in the system (dashed pointers are outdated).

the most correct one. By letting the agents memorize the acquaintances that
provided the newest information about other agents together with the age of
this information, they will point in the direction of the fastest communication
path from a target, which is typically close to the shortest path.

Figure 12 indicates the perception around the central node in a model
network (see also Java applet. It is clear that the information is most up to date
in the immediate neighborhood of the agent, but that distant communication-
pathways extend the whole network.

• Lesson 8: Sorting information according to its age opens for robust
routing on networks.

Self-organization of networks



Kim Sneppen: Agents in Econo- & Social systems 18

young old

Age of information

Figure 12: The size and the color of the nodes reflect the age of the information
the well connected agent in the middle has of other agents. The width of the links
reflects the relative amount of information they transfer to this agent, and the color
the average quality (age) of this information. It is clear that the agents make use of
the hubs to create short communication-paths.

Social mobility may be seen as the response to the quest for better in-
formation access in a social system. We let agents communicate to build a
perception of a network like in the previous section, and further allow the
agents to use this information to create strategic links. The core of such a
simple self-organization model is formulated in the interplay between a Com-
muication and a rewiring step:

• Communication: Select a random link and let the two agents that it
connects communicate about a random third agent. The two agents also
update their information about each other.
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• Rewiring: Select a random agent and let it use the local information to
ask an acquaintance about whom to establish a link to, to shorten its
distance to a randomly chosen other agent (the answer is the agent that
the acquaintance points to). Subsequently a random agent loses one of
its links.

The communication event is typically repeated of the order of number of links
in the system for each rewiring event.
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(a) (b)
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Figure 13: Illustration of the feedback of communication on the topology of both
the communication network and the perception network at 4 different levels of com-
munication C. C = 1 corresponds to on average 1 communication event per link and
rewiring event. The system size is N = 1000 agents connected by L = 2500 links. At
lower level of communication, the degree distribution becomes random Erdos-Reney
like, and at the sam time the links the agents believe they have (poinnters) deviates
from the real links (links).

To quantify th self-organization between communication, we in Fig. 13
show degree distributions Black dots) for simulations of a system with N =
1000 agents and L = 2500 links. Overall lesson is a gradual change from a
narrow degree distribution at low C, to a broad degree distribution at high
communication C.

Notice that the model does not give robust scale free behaviour, as the de-
gree distribution very much depends on details of communication behaviour. If
agents have limited capacity for responding, ta cutoff will for example develop,
possibly with ways to bypass the then inefficient hups.
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Question:
1) Simulate a simplistic version of the above model: At each time step select
a node, and allow this node to make a link to the one of its neighbors neighbor
who have the highest degree. If selected node have no link, let it make a link
to a random node. In any case remove a random link. Do the simulation for
N=100 nodes and 150 links starting with a random Erdos Reynei network.

• Lesson 9: Hunting for new information while networking reinforces
social hubs. It “pays” to be name-dropping.

Social seggregation revisited: A network approach

Social groups with different tastes, political convictions, and religious be-
liefs emerge and disappear on all scales. But how do they form? Do they form
because heterogeneous people search and navigate their social network to find
like-minded people, or because interests are reinforced by interactions between
people in social networks with modular topologies? However, if groups form
because people are inherently different and search for people who are like them,
then the question becomes where the different interests come from. If, instead,
it is because interests are reinforced in modular social networks [51], then we
must first understand why social networks are modular. Following ref. [52]
we here combine the two views to propose that group formation can occur
without assuming that people have different intrinsic properties.

We introduce a simple agent-based network model of communication and
social navigation. We use social navigation to represent peoples’ attempt to
come nearer to the information source in the network they find interesting.
The model is inspired by everyday human conversation and captures the feed-
back between interest formation and emergence of social structures. Taking
this approach, we acknowledge that the goal of individuals to understand and
agree with their closest associates [53, 54, 55] can be obtained either by ad-
justing their interests or by adjusting their contacts. Agents is asumed to have
one goal: to be updated about topics they find interesting,with objects being
limited to the agents themselves!

The model is defined in terms of N connected by a fixed number of links
L, as its behaviour depend on communication and social navigation through
3 parameters: the communication to social navigation ratio C/R, the interest
size η, and the flexibility µ. Central to the model is to build and use a per-
ception of the system. We therefore give each agent i an individual memory
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Figure 14: Modeling communication and social navigation. The depicted
memory illustrates, from left to right: agent indices for memory, clocks for
the quality memory, and bars for the interest memory. I.e. the number of bars
in Mi(k) corresponds to the number of elements mi(k) of agent i’s interest
memory that are allocated to agent k, with the black bar representing the
global and fixed interest. (a) Communication C: A random agent i selects
one of her neighbors j proportional to her interest in j. Similarly, either of
the two agents selects agent k from her interest memory. When agents i and j
communicate, they update their interest memoriesa and the information about
each otherb, and the agent with the oldest memory about k updates her infor-
mation about kc. (b) Social navigation R: A random agent i selects an agent
k proportional to her interest in k and recollects the friend j = Mrec

i (k) who
provided her with information about k. Subsequently agent i forms a link to
her friend’s friend, that is j’s friend l = Mrec

j (k), to shorten her distance to
k. To keep the number of links fixed in the network, one random agent loses
one random link ( Footnotes refer to updates of the memory in the communication event: aAgents i and j replace
a fraction µ of their interest memory with k. Similarly, both agents reciprocally increase their interest in the other agent.
bBoth agents update their recollection and quality memories: M

rec

i
(j) = j and M

age

i
(j) = 0 for i, and M

rec

j
(i) = i and

M
age

j
(i) = 0 for j. ).

Mi. The memory consists of three one-dimensional arrays,

Mi =











Mrec
i a recollection of who provided the information

Mage
i the quality (age) of the information

Mint
i the interest preferences in agents

The recollection memory contains N names of the friends Mrec
i (j) that pro-

vided information about agents j = 1 . . . N . To compare the quality of the
information with friends, the quality memory stores the age of each of the N
pieces of information. Finally, the interest memory contains ηN ≥ N names of
agents in a proportion that reflects the interest in these agents. Recollection
and quality memories Mrec

i and Mage
i constitute agent i’s local map of the

social structure [?], and Mint
i is the interest memory with priorities of other

agents (see Fig. ).
Also this network model is executed in time steps, each consisting of one

of Communication C and Social navigation R where the selection of commu-
nication topic and social-navigation direction are associated with interests as
described in Fig. : To select a topic of communication or direction of social
navigation, an agent simply picks a random element in her interest memory
and reads off the name of the agent that she has stored there.
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Because the agents also update their interest memories when they commu-
nicate, there is a feedback between the organization and the agents’ interests
which makes the interest memory of crucial importance. The socia structure
will shape itself to fit the interests of the agents, which in turn is determined
by the social structure.

In paticular, Global interests generate the hierarchical organization de-
scribed in previous chapter; local interests generate a heterogeneous organiza-
tion. By letting the first N elements of the interest memory form the global
interest and the remaining ηN − N elements form the local interest, the pa-
rameter η provides full control of the strength of the feedback. The elements
of the static global interests are fixed to each of the N agents’ names, whereas
the elements of local interest are updated by communication.

For η = 1, any topic is selected with equal chance, whereas larger η in-
creases the bias of proportionate local interest selection over random global
interest selection. The modeling of proportional allocation of interests is not
only the simplest possible mechanism; it is also in accord with H. Spencer’s
observation of proportionality between interest and previous experience [51]:

We initiate each simulation by filling the local interest memory with ran-
dom names. Later, each turn agent i communicates with or about another
agent j, the name of j randomly replaces a fraction µ of i’s dynamic interest
memory. That is, Mint

i (α) → j for µ(ηN − N) values of α ∈ [N + 1, ηN ].
Thereby old priorities will fade as they are replaced by new topics of inter-
est. We denote by mi(k) the number of elements of agent i’s interest memory
that are allocated to agent k. When selecting a communication topic or the
direction of social navigation, agent i, by choosing a random element in her
interest memory, selects agent k proportional to mi(k).

We increment the age Mage by one after every L communication events.
Because every agent always has information with age 0 about itself, Mage

i (i) =
0, the age of the information about an agent becomes older as, through commu-
nication, it percolates away from the agent in the network. When two agents
communicate about a third agent, and evaluate the quality of the information
based on its age, the agent with the newest information tends to be closer to
the third agent. This guarantees that the recollection memory works as an
efficient local map of the social structure.

Social navigation, which corresponds to a rewiring of the network, is a slow
process compared to communication. If this were not the case, random people
would share reliable information with anybody and the network become mean-
ingless, i.e. random as seein in previous chapter. We therefore simulated the
model with on average C/R = 10 communications per link for each rewiring
event in the system. Moreover, because friends refer to the particular agents
that have provided the most recent information about the selected agent, new
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links are formed on the basis of the memory rather than on the basis of the
present network.
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Figure 15: Local communication generates social groups. From left to right, the
networks are generated with increasing interest size η, (η = 1 in (a), η = 10 in (b),
and η = 100 in (c)). As a function of η, the bottom panels illustrate the typical
module size in (d), the cliquishness in (e), the maximum degree in the network in
(f), and social horizon in (g). Simulations are based on C/R = 10 communication
events per link for each social navigation event in the system, with system size fixed
to 100 agents and 150 links. The results are robust to a hundredfold drop in the
communication to rewiring ratio, but break down at an even lower communication
rate when only small groups can be maintained by the communication. In addition,
panels (d-g) illustrate the dependence of the rate of interest adaptation, or flexibility,
with a µ = 0.01% change of the interest elements per communication event for
stubborn adaptation (black lines), and a µ = 1% change for flexible adaptation
(shaded lines). Stubborn adaptation corresponds to a flexibility of 15 percent change
in the interest memory when all links are changed once, whereas flexible adaptation
corresponds to complete reallocation.

Most remarkably, the model generates interest groups and modular social
networks without assuming that people are different from the beginning. The
mechanism that drives the process is a feedback between interest formation
and the emergence of social structures catalyzed by the flow of information.
Figs. 15(a-c) show three networks generated by interest sizes η = 1, η = 10,
and η = 100 respectively. That is, in the network in Fig. 15(a), there is
only random global interest selection, whereas the more modular networks
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in Figs. 15(b) and 15(c) are generated with dominating local proportionate
interest selection.

When close-by agents receive more attention, they will also be frequent
targets of social navigation. As Fig. 15(e) illustrates, this strongly affects the
abundance of triads, here measured in units of the random expectation of
triangles △/△r [?]. When agents shift their attention to their neighborhood,
the centralized network breaks down. Figure 15(f), showing the typical size
of the largest hub, kmax, captures this transformation. Overall, for increasing
but small interest size η, the largest hubs receive more attention, which allows
the system to remain in one module. When η exceeds 5, s decreases strongly,
the degree distribution narrows further and the number of triangular cliques
increases substantially.

The transition from a centralized to a modular structure, driven by the po-
tential to form individual interests, is of course also manifested in the interest
memory itself. To quantify this gransition, the local social horizon,

nlocal =

〈

ηN

〈m2
i (j)〉/〈mi(j)〉

〉

, (13)

with a denominator, with averages over j, that corresponds to agent i’s typical
interest allocation in an agent. The typical number of individuals an agent
has in her interest memory is simply the number of such allocations there is
room for in an agent’s interest memory, averaged over all agents. Because
only a limited amount of information is exchanged with agents outside the
local social horizon, it can also be thought of as an information horizon [56].

The global social horizon,

nglobal =
ηN2

〈m2(j)〉/〈m(j)〉
, (14)

is calculated by pooling the agents’ interest memories together into m(j) for
the total number of elements allocated to agent j. Figure 15(g) shows the
local horizon of the individual agent together with the global horizon of all
individuals. As η increases, nlocal collapses while nglobal remains on the order
of N ; the development toward social cliques is democratic, with anyone getting
a fair share of attention while still allowing people to focus locally on members
of their particular “club.” For further details of this model, go to ref. [52].

• Lesson 10: Seggregation may develop among identical agents, as they
self-organize into cliques that primarely are interested in themselves.

• Lesson 11: Social organization is hugely influence by communication
rules/constraints. Adding global broadcasting to a social network will
increase global avareness, and reduce clustering.
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Questions:
1) Consider N=100 agents that each have a memory list with 10 slots recollecting

the sequence of people they talked to the last to times. At each time step select an

agent i, and select one peorson j in the agents memory list. Move the agent to the

group that this person belong to, and replace one of the slots in the agents memory

list with a memory of j. Furtehr with probability p, also let the agent talk to a

random person, and move to thsi persons group. Start simulations with all agents

seperate, and study steady state distribution of number of groups as well as sizes of

groups.

→ more agent based models of social systems:

• Thresholds & Bistable phenomena [10]

• Thresholds and a society of excitable agents [63, 64]

• Cellular automata: [1, 3, 63]

• Self organized criticality: Grasbergers office version of the sandpile
model [62, 63].

• Diversity versus monoculture: language diversity, naming game,
voter models [65]

• Game theory and Bluff: Von Neumann Poker [60], Games for Squir-
rels and Generals.

• Tragedy of the commons: Rock-paper-scissor game [66], ...

• Game theory and Models of cooperations: Prisoners dilemma [16].

• Nash equilibrium: [61, 60]

• Asymetric information: [7]

• Crash models & financial depth [59]
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